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Abstract
Glassy dynamics of fluid particles in a supercooled liquid is discussed on the
basis of the time-evolution equation obtained through the dynamical density
functional theory (DDFT). The advantage, brought about by the coarse-grained
nature of the formalism, in treating such strongly correlated motion over
other approaches, such as the mode-coupling theories and direct computer
simulations, is emphasized. A direction in which the DDFT should prove
its worth on examining the phenomena is suggested.

1. Introduction

The classical density functional theories have matured to open up a new paradigm in
investigating fundamental aspects of inhomogeneous fluid physics and related areas. Among
the vast area of topics concerned, this paper will contribute to the problem of slow dynamics
in supercooled liquids near their glass transition points.

The problem has been studied for more than a century not only by physicists but also by
chemists and engineers without achieving any crucial understanding on the phenomena until
the pioneering mode-coupling theories (MCT) appeared in the mid-1980s [1]. The solution
of the mode-coupling equation addressed the glass transition as an ergodic-to-non-ergodic
transition. The discovery of the fascinating consequences on the singularity and the scaling
properties around the transition has led to a subsequent explosion in research in this field. The
current understanding of the phenomena would never have been attained without MCT and
this paper begins with a brief overview on the glassy dynamics from the viewpoint of MCT.
Experimental as well as computer simulation research stimulated by MCT over more than a
decade, however, have offered clear-cut evidence showing the limitation of MCT at the same
time [2]. This was our initial motivation to devise and develop a new framework that should
overcome the deficiencies of MCT. This point will be touched on in the latter half of this
section before introducing our strategy, the dynamical density functional (DDF) formalism,
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in the next section. Since the derivation of our DDF equation and the procedure with which
to obtain numerical solutions to it have already been published elsewhere [3–7], they will be
only outlined here, emphasizing the underlying philosophy of coarse-graining. The concept
of coarse-graining or contraction of information should be the guiding principle along which to
proceed and is stressed throughout the present paper. In the third section, our published results
describing the general features of slow dynamics in a supercooled liquid will be first reviewed.
This includes the result which has never been obtained through the original version of MCT.
Then, the advantage brought about by the coarse-grained nature of the DDF formalism will be
discussed. Some new results are presented. The last section is devoted to discussion, in which
other DDF approaches will be referred to. Also we shall respond to the criticism raised by the
latter. In order to render the paper useful to general readers further investigations are suggested
which will deepen our understanding of the phenomena. A further comment is included in the
appendix.

Although many kinds of liquids, which include polymer solutions, ionic and molecular
liquids other than simple liquids, have been examined and even classified according to their
manner of structural relaxation [8], we focus only on the hard-sphere system (HSS) in this paper.
This is because not only can analytic calculations sometimes be performed for HSS but also HSS
serves as the reference system for subsequent perturbation calculations of liquids with more
realistic interactions [9]. The HSS is supposed to be experimentally realized by a suspension
of identical colloidal spheres stabilized by thin macromolecular surface layers [10]. The latter
has been extensively studied utilizing dynamic light scattering spectroscopy to accumulate
results [11–14] which are to be compared with those put forth by theories. However, care
must be taken when comparing the theoretical treatments for HSS with the experimental
results obtained for a colloidal suspension, because the former, including ours, neglect the
hydrodynamic interactions present in an actual colloidal suspension. Indeed, Tokuyama and
Oppenheim [15] claimed, through the calculation of the transport coefficient obtained from
a suitable spatio-temporal coarse-graining of the set of Langevin equations of motion of the
colloidal particles interacting hydrodynamically as well as directly, that the hydrodynamic
interactions can affect not only the short-time dynamics but also the long-time dynamics in
which the structural relaxation occurs. Whether their results can reproduce the experimental
results as well as MCT remains to be seen.

1.1. Brief overview of glassy dynamics in supercooled liquids

The MCT were originally designed to deal with the cage effect in dense liquids. To this end,
the Zwanzig–Mori type [16] time-evolution equation for the normalized density correlator
φq(t) ≡ S(q, t)/S(q) was set up first [1], where S(q, t) and S(q) = S(q, t = 0) are the
density autocorrelation functions or the so-called intermediate scattering function and the
static structure factor, respectively. The former is given by S(q, t) = 〈δρq(t)δρ−q(0)〉/N ,
where N is the total number of particles in the system and δρq is the spatial Fourier transform
of the local density fluctuation δρ(r) ≡ ρ(r) − ρ0, ρ0 = 〈ρ〉 being the average density.

Then, in the original MCT, a mode-coupling approximation, in which the memory kernel
was expressed as a quadratic function of φq(t), was invoked to obtain a closed set of coupled
equations for φq(t). The resultant self-consistent equation exhibited a fold-type bifurcation for
the time evolution of φq(t). That is, as supercooling proceeds beyond the equilibrium freezing
point, there is a point beyond which φq never decays to zero but to some positive value fq ,
called the glass form factor. Here, the control parameter governing the degree of supercooling,
the packing fraction η for HSS, enters through S(q), which is the input information to the
mode-coupling equation. Thus, the original MCT addressed the liquid-to-glass transition
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as the ergodic-to-non-ergodic transition. In this context fq is also called the non-ergodicity
parameter. It is noted that the singularity obtained through MCT is not associated with the
dynamical variable with built-in critical divergence but is purely kinetic in origin.

The MCT have revealed in this way not only the novel feature of the liquid–glass
transition, which is different from that of the conventional thermal phase transitions, but also
the ‘universal’ character of the relaxation scenario near the transition point as follows [17].
The separation parameter ε ≡ (η − ηc)/ηc, ηc being the critical packing fraction at which
ergodicity breaks down, was introduced, which measures the distance from criticality. The
original MCT predictions were then expressed as the asymptotic scaling forms that are correct
only in leading order in ε. MCT thus predicted that beyond the microscopic timescale t0 of the
order of the reciprocal of phonon frequency the density correlator shows the first critical decay,
called the β-relaxation, with the characteristic timescale tε = t0|ε|−1/(2a) � t0, which diverges
as η tends toward ηc with the exponent 1/(2a) (0 < a < 1/2). In the β-relaxation regime the
density correlator was shown to obey φq(t) = f c

q +h(q)
√

εg±(t/tε), which implies that spatial
and temporal dependencies are separated and is known as the factorization property. Neither
the non-ergodicity parameter at criticality f c

q , the critical amplitude h(q) nor the ‘universal’
function g±, called the β-correlator (± corresponding to the sign of ε), depend on |ε|, and
hence on η. The β-correlator can be computed if the one parameter λ, called the exponent
parameter which is in turn obtained from S(q), is given. However, in the early β-relaxation
regime, g± can be given by a power-law form g±(t) ∼ t−a (t � 1). The exponent a is the
same as that which appeared in the β-relaxation timescale tε .

The divergence of tε and the decay of the β-relaxation governed by the β-correlator
toward ε → 0± is an aspect that expresses a liquid particle going to be arrested in a cage
formed by the surrounding particles. However, a further relaxation is possible on the ε < 0
side by cage breakdown and hence allowing large-scale diffusion. This process is called α-
relaxation. The late β-relaxation regime continuously crosses over to the early α-relaxation
regime so that the decay law may be obtained by the asymptotic expansion of g−. Indeed,
the original version of MCT yielded a different power law g−(t) ∼ −tb (t � 1), which
is also known as the von Schweidler law. The exponent b (0 < b � 1) is related to a as
well as to λ via 	(1 − a)2/	(1 − 2a) = 	(1 + b)2/	(1 + 2b) = λ. The manner of the α-
relaxation is characterized by the so-called time–temperature superposition principle, which
is also valid to leading order in ε, implying that the time variations of the density correlator
for various ε (<0) fall on a single curve when the time is suitably scaled; φq(t) = 
(t/τ).
The original MCT showed that the α-relaxation timescale diverges as ε → 0− with the power
law τ ∼ D−1 ∼ |ε|−γ , where D is the self-diffusion coefficient. The exponent γ is related to
the exponents a and b by γ = 1/(2a) + 1/(2b). The master function 
, though not universal
in that the functional form depends on the probing quantity, is well described by the stretched
exponential function φq(t) ∼ exp[−(t/τq)

βq ]. However, this is shown to be correct only in
the limit q → ∞, where βq tends to b of the von Schweidler law [18].

These predictions were extensively tested by various laboratory experiments and computer
simulations, and were thoroughly reviewed [19, 20]. Those results that concern HSS are
summarized in table 1. As seen from table 1 the agreement between the MCT predictions and
experimental results is quite satisfactory. This is because the colloid particles are so large in
size that the effect of thermal fluctuations is quite ineffective, as far as hydrodynamic forces
mediated by a solvent are considered to be negligible at long times, and complete structural
arrest is attained within the timescale of experimental observations. The effects of thermal
fluctuations, not taken into consideration in the original MCT, are the very effects that trigger
restoration of ergodicity in other glass forming systems.
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Table 1. The result of experimental tests regarding the scaling properties of density correlators
measured by dynamic light scattering spectroscopy for colloidal hard spheres. a and γ are the
exponents that specify the β- and α-relaxation timescales, respectively, whereas b is obtained
through the asymptotic expansion of the β-correlator (see text).

MCT predictions [21] Experimental tests

Critical packing fraction ηc = 0.525 0.574 < ηc < 0.581
ηf = 0.494a

ηm = 0.543b

Scaling regime Scaling properties

β-relaxation Factorization property Demonstrated in
figure 4 of [11] (ε ≶ 0)
figure 8 of [12] (ε > 0)
figure 14 of [13] (ε ≶ 0)

Glass form factor Demonstrated in
and critical amplitude figure 2 of [11] (ε ≶ 0)

figure 7 of [12] (ε > 0)
figure 10 of [13] (ε ≶ 0)

Exponents Compared in
a = 0.301 figure 3 of [11]
b = 0.545 figure 11 of [13]

α-relaxation Time–temperature Demonstrated in
superposition principle figure 4 of [11]

figure 13 of [13]

γ = 2.58 Compared indirectly in
figure 3 of [11]
figure 11 of [13]

a Freezing point.
b Melting point.

1.2. Need for a coarse-grained description

The original version of MCT described above captured the cage effect by the nonlinear coupling
between φq ’s entering in the memory kernel, which becomes stronger with increasing density
fluctuation toward the ergodic-to-non-ergodic transition point until the structure is completely
frozen in. However, in real materials, this transition is avoided due to a residual activation
process, called the hopping process, caused by thermal fluctuations. In order to take this
effect into account, the original MCT were patched up in such a way that the nonlinear
coupling to currents φ̇q is included. The new version is often referred to as the extended
MCT [22, 23], which is characterized, in short, by an inclusion of the temperature (packing
fraction)-dependent hopping parameter δ. In the simplest case in which S(q) is given by a
single δ peak, the time variation of the density correlator was numerically solved to show
that the system always remains ergodic [22]. However, the determination of δ in the usual
cases is too involved so that δ is merely taken as a fitting parameter with which to adjust the
β-correlator [24].

With this circumstance in mind, the dynamical density functional theory (DDFT) was
designed [3] to naturally involve the effect of thermal fluctuations. The MCT treatments for the
glassy dynamics around the singularity remind us of those for the critical dynamics, although
the singularities in the latter are caused by underlying critical point singularity. Then, in view
of the fact that the shortcoming of the original MCT arises from their mean-field character,



Dynamical density functional theory for glassy behaviour 12207

the effects of thermal fluctuations would be incorporated most naturally by constructing an
appropriate mesoscopic kinetic equation based on the analogy of the strategy taken in the
theoretical development of the critical dynamics [25]. That is, what we need is to set up a
set of time-evolution equations involving only spatio-temporally slowly varying variables, the
so-called gross variables in the critical dynamics nomenclature, which are coarse-grained up
to the spatio-temporal scales of the problem in question.

One of the trials in this direction was the nonlinear fluctuating hydrodynamics developed
by Das and Mazenko [26], in which the local velocity field as well as the local density was
chosen as the gross variable. However, physical insight is required for the choice of gross
variables because, unlike in the critical dynamics, no general prescription is available. In
our DDFT, only the density has been retained based on a heuristic argument of Cohen and
de Schepper [27], substantiated later [28], that the local momentum and energy densities
may quickly be transferred among the particles especially in a dense fluid but the particles
themselves are not easy to rearrange.

The coarse-grained description will, at the same time, bring about an effective access to
the slow relaxation regime through the renormalization of the microscopic dynamical effects
to the appropriate transport coefficients. This is evident as seen from the time-dependent
Ginzburg–Landau treatment of, for example, the phase ordering kinetics [29]. One of our
purposes in this review is to introduce some useful aspects of DDFT.

In summary, by introducing a coarse-grained kinetic equation for the density, we are
aiming at capturing the essential part of the long-time behaviour of the glassy dynamics. It
should be mentioned that what was done in the original MCT is an extraction of temporally
slowly varying components of the density correlator with the characteristic timescales of the
β- and α-relaxations from the mode-coupling equation derived on the microscopic basis. The
DDFT takes over the spirit of coarse-graining and is believed to be justifiable in this context.

2. Dynamical density functional theory

2.1. Formulation

Microscopically time evolution of the state specified by a set of microscopic variables {a} is
described by the time-evolution equation for the distribution function P({a}, t), which is in
general given by

∂tP({a}, t) = L{a}P({a}, t), (1)

where L stands for a Liouville operator defined in the space {a}. For a colloidal system
consisting of N colloid spheres, a suitable choice for this microscopic description is the
Smoluchowski equation in which {a} is taken as {Ri} ≡ RN , where Ri (i = 1, . . . , N)

is the position vector of the i th particle. P in (1) now represents the N-body distribution
function PN (RN , t) and the equation is [30]

∂t PN (RN , t) = �N (RN )PN (RN , t), (2)

where �N (RN ) = D0∇N · [∇N + β∇N UN (RN )], D0 is the Stokes–Einstein diffusion
coefficient, β = 1/(kBT ) (the reciprocal of the temperature divided by the Boltzmann constant
kB) and UN (RN ) is the total potential energy.

We now coarse-grain (2). To this end we divide the whole system into an assembly of cells
of volume vc, each labelled by a vector nwith integer components. This cell is macroscopically
small but microscopically still large enough to contain a large number, vcρc(rn), of particles
such that

1 � vcρc(rn) � N. (3)
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Thus, the coarse-grained density ρc(rn) associated with the nth cell, whose centre is located
at rn, is defined. Our program is then to coarse-grain (2) to derive the time-evolution equation
for the coarse-grained density probability functional P({ρc}, t), which may take the form

∂t P({ρc}, t) = �c P({ρc}, t). (4)

However, this program is not executed straightforwardly, because UN in �N contains
interactions with inter-particle distance shorter than the coarse-graining cell size. This obstacle
is bypassed in the following way. First, the functional U{ρ} is expressed in terms of the original
density variable ρ, reducing vc to be infinitesimal. U{ρ} thus obtained is bilinear in ρ. We
assume then that the potential energy functional Uc{ρc} is still expressible as a bilinear form in
ρc after the coarse-graining but with the original potential density replaced by some effective
potential energy density. At this stage the coarse-grained operator �c in (4) is found to include
the gradient of the chemical potential given by the functional derivative of the coarse-grained
free-energy functional Hc{ρc}. The latter contains, in addition to the configurational entropy
contribution associated with the arrangement of N particles into coarse-grained cells, the
coarse-grained potential energy functional which is still fictitious in that the functional form of
the effective potential energy density is not determined yet. If the coarse-grained free energy
is expanded around the liquid state ρ = ρ0 up to the second order in δρ(r), then the effective
potential energy density in question is included in the second-order term. Noticing that the
second-order term, when Fourier transformed followed by averaging over the liquid states
with the density ρ0, yields the static structure factor, which is then expressible in terms of the
Fourier transform of the direct correlation function C(r) [9], we can establish indirectly the
relation between the effective potential energy density and the direct correlation function. In
this way, the operator �c in (4) is found to be given by

�{ρ} = − D0

kBT

∫
dr

δ

δρ(r)
∇ · ρ(r)

[
kBT

δ

δρ(r)
+

δH {ρ}
δρ(r)

]
, (5)

with the coarse-grained free energy [31]

H {ρ} = kBT
∫

dr ρ(r)

[
ln

ρ(r)

ρ0
− 1

]
− 1

2
kBT

∫ ∫
dr dr′ C(|r − r′|)δρ(r)δρ(r′). (6)

Note that hereafter we drop the subscript ‘c’ used to express explicitly coarse-grained quantities.
In particular, ρ(r) in (5) and (6) denotes the coarse-grained density, now regarded as a slowly
varying continuous field, which should not be confused with the original density. The second
term in the square brackets in (5) is the chemical potential which represents the thermodynamic
driving force, whereas the first term carries the effect of thermal fluctuations. In this context,
�{ρ} is said to be a stochastic time-evolution operator. The expression (6) is, except for a
trivial difference, the same as that used to study freezing and glass transitions [31, 32].

We thus arrive at the closed coarse-grained description, given by (4)–(6), which expresses
the time-evolution of the coarse-grained density field (see [3] for a full derivation).

We can also execute a coarse-graining procedure for a general one-component classical
fluid. In this case, instead of executing the program faithfully, we take a shortcut by
choosing as the starting description the nonlinear fluctuating hydrodynamics [26] mentioned
in section 1.2, which already reaches the coarse-grained description (4) but the arguments
contain the momentum field g(r) as well as the density field ρ(r). As stated in section 1.2,
our task is then to average out the field g(r) from the time-evolution equation. A systematic
way for such a problem is to use the projection operator formalism [16]. However, the algebra
is somewhat lengthy and hence only the final result is mentioned. As for further details of
derivations, readers are referred to the original paper [3].
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Surprisingly, quite the same time-evolution equation results as that found for a colloidal
system with only a replacement of D0/(kBT ) by τ/m. Here τ is some time constant of the order
of the local momentum relaxation, which should be regarded as the lower cutoff timescale of
our coarse-grained description.

The following comment is in order at this point. MCT predicted that at long times the
relaxation dynamics is independent of the microscopic dynamics adopted. This is evident also
from our DDFT argument that the identical DDF equation results at longer times than the local
momentum relaxation time. Indeed, we can derive [3] on the basis of (4) and (5) with further
approximations of the same self-consistent equation which determines the long-time behaviour
of the density correlator as that used in MCT [17, 33]. In order to corroborate the prediction
computer simulations were carried out for a Lennard-Jones mixture [34] and a polydisperse
mixture of colloidal particles [35] with both Newtonian and Brownian dynamics. It was found
that the relaxation dynamics does, in fact, not depend on the microscopic dynamics in the
α-relaxation regime [34].

2.2. Mapping onto lattice gas model

As is evident from the above argument, the DDF equation (4) with (5) is the most natural
equation that embodies the idea that in sufficiently dense liquids the density is the only slow
variable that describes local small scale motions. From this point of view, the computational
works which simulate the Langevin equations containing the momentum and density variables
are not satisfactory for studying late-stage dynamics in that a task of numerically solving the
equations was realized only within the initial stage of freezing due to a numerical instability
encountered at further supercooling [36].

In our DDFT approach, the momentum variable was analytically eliminated at the outset3.
The resultant equation (4) is a closed stochastic equation, which includes the nonlinear feedback
mechanism of MCT and at the same time permits us to study long-time behaviour even in the
α-relaxation regime governed by the hopping process over the free-energy landscape described
by the Ramakrishnan–Youssoff (RY) free-energy functional (6).

However, the DDF equation is strongly nonlinear and is still quite difficult to treat even
numerically. We therefore present a substitute for equation (4) in the following heuristic
argument.

Let us suppose a Kawasaki-type kinetic Ising model [37], which is in general,
corresponding to (1), written by the following master equation for the probability distribution
P0(n, t):

∂t P0(n, t) = L(n)P0(n, t) ≡
∑
n′

[w0(n|n′)P0(n
′, t) − w0(n

′|n)P0(n, t)], (7)

where n = {ni} denotes a set of occupation variables, ni = 0 or 1 depending on whether
the i th site is vacant or occupied, respectively, and w0(n|n′) is the transition probability from
n′ to n, to which the detailed balance condition is applied. Here the whole system has been
divided into an assembly of primitive cells with the lattice constant h and spin exchanges
are supposed to take place with equal probability between any pair of spins belonging to the
nearest-neighbour coarse-graining cells, a coarse-graining cell consisting of many primitive
cells. The energy entering the Ising model through w0(n|n′) is given by

H0(n) = − 1
2 kBT

∑
i �= j

C(|ri − r j |)ni n j , (8)

3 The conceptual difference between the Langevin dynamics method and our DDF formalism has been argued
elsewhere [7] and is not repeated here.
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where C(r) is the direct correlation function of the reference liquid and ri is the position vector
of the i th site.

Here we set our coarse-graining length scale �,which should be appropriate for describing
the phenomenon under consideration, by the following inequalities:

h � � � σ ∼ l, (9)

where σ and l are the range of C(r) and the average inter-particle distance ∼ρ0
−1/3,

respectively. As for the concrete coarse-graining procedure of (7) with (8) we refer to [7].
The resultant time-evolution equation after taking the continuum limit becomes the DDF
equation (4) with H {ρ} taken to be the RY form (6). On the way to arrival at the DDF
equation, we have assumed that ρ0 is much smaller than ρm, ρm being the maximum density
when all the lattice points in a coarse-graining cell are fully occupied, so that ρm − ρ(r) may
be safely replaced by ρm. Thus, it can be said that the DDF equation (4) is (inversely) mapped
onto the kinetic Ising model (7). We here call the latter the lattice version of DDFT.

In our lattice version of DDFT, the nonlinear feedback mechanism of density arrest central
to MCT enters through the spin-exchange dynamics via the factor ρ0(ρm − ρ0)  ρmρ0. Note
that the factor is responsible for the excluded volume or steric hindrance property of spin
exchange or ‘particle’ migration in the lattice gas language4. Thus, if the DDF equation (4)
with (6) is going to exhibit glassy behaviour, this must be reflected in some way in the lattice
DDF equation (7) with (8). Therefore, the studies of the latter as a substitute of the former
might be quite rewarding, irrespective of the abovementioned approximation involved. What
are presented below are the results obtained through a numerical investigation of the lattice
DDFT, which is preceded by a brief account of the method of computation. Before closing this
section we mention that an attempt was made to give a theoretical basis for the lattice DDFT
by a sophisticated but formal argument [38].

3. Numerical computations

The whole system is a cube of side L = L̃h, which is divided into the computational lattice
consisting of L̃3 lattice points. As for the direct correlation function C(r) in (8), which is the
only input information for our lattice version DDFT besides ρ0, Wertheim’s solution [39] to
the Percus–Yevick equation for HSS was employed. The hard sphere diameter σ involved in
C(r) is expressed in units of h as σ = σ̃h. We took L̃ = 15 and σ̃ = 3.3. See [4] for details
which include the account of the choice of these values. We only mention that the present
set-up, largely restricted by the computer resources available, does not seem to satisfy the
coarse-graining condition (9). At this time the only thing we can do is to judge by the results
obtained.

The successive configuration n(t) was generated using the ordinary Monte Carlo method,
provided that the initial configuration is supplied, which was prepared by randomly occupying
the lattice sites with the average density ρ0 or hence the packing fraction η = (1/6)πρ0σ

3.
That is, a Markov chain {|n(t)〉, |n(t + 1)〉, . . . , |n(t + m)〉} was generated according to

|n(t + m)〉 = L̂m|n(t)〉, (10)

where n is now represented by a state vector |n(t)〉 in the configuration space spanned by a
set of L̃3 basis vectors. L̂ in (10) represents the stochastic operator corresponding to L in (7),
which was implemented by the heat bath method [40]. In order to avoid a trivial correlation
between the consecutive |n〉’s thus generated, a number of L̃3 configurations were generated
4 The lattice gas particle does not directly correspond to a real constituent particle of a liquid and is distinguished
from the latter by quotation marks. The difference between the two will be emphasized in section 3.2 below.
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to increase the time in (10) by one, i.e. the time in the lattice version of DDFT is represented
in units of Monte Carlo steps (MCS) per site.

3.1. Overall aspect

It is noted at first that, although the dependence of the thermodynamic state of an HSS on
η has been established as shown in table 1, each value of those packing fractions does not
necessarily yield the corresponding phase transition point in our system. This is due partially
to the finiteness of our system but mainly due to an effect of discretization that cannot be
easily estimated here. The latter effect originates from the discretization of an originally
continuous free-energy functional, which is evaluated as the discrete Ising Hamiltonian (8) in
our lattice DDFT. The situation quite resembles that which appeared in the Langevin dynamics
method [36] in which RY free-energy [31] was discretized for computational purposes. Thus,
the fact that values quite similar to those obtained for the freezing and crossover packing
fractions in [36] (see below), which are different from those found in an actual system, does not
seem accidental. We therefore have to begin with characterizing the state, or more specifically,
order, of our system from the viewpoint of structural relaxation as a function of η.

In order to properly characterize the state of the system we define the following reference
state|�(α)

ref 〉 in terms of |n〉:
|�(α)

ref 〉 = ‖〈n〉(α)

t2;t1‖
−1|〈n〉(α)

t2;t1〉, (11)

where

|〈n〉(α)

t2;t1〉 ≡ 1

t2

∫ t1+t2

t1

dt ′ |n(t ′)〉. (12)

This expresses the ‘mobility’ of |n〉 in the configuration space, which is strongly affected
by barriers and valleys on the free-energy landscape that are developed with increasing
supercooling. The origin t1 should be taken to be sufficiently large to avoid possible initial
transients, whereas the order of t2 should be chosen to be that of the characteristic time under
consideration. The states thus averaged over the timescale t2 would depend on a particular
basin, denoted by the superscript (α), to which the states belong. The property of the reference
state is fully explained in [7].

The numerical factor in front of (11) accounts not only for the normalization of |�(α)

ref 〉 but
also gains meaning in assessing the amount of ergodicity of the system within the timescale
of evaluation. Considering that we are treating the lattice gas model, some ideas from the spin
glass theory may be taken over to prescribe the order of the system. Indeed, we can construct
the Edwards–Anderson type order parameter [41] in terms of the norm ‖〈n〉(α)

t2;t1‖ as follows:

�EA(t2; t1) = 1

ρ0(1 − ρ0)

1

L̃3
‖〈n〉(α)

t2;t1‖
2 − ρ0

1 − ρ0
, (13)

where the overbar means an average over α. From preliminary calculations in which t1 = 100
MCS was chosen but t2 was extended up to 3 × 104 MCS, the liquid state could be divided
into the following three regimes according to the qualitative behaviour of �EA:

(i) regime η < ηf  0.43, in which �EA decays quickly,
(ii) regime ηf < η < ηx  0.49, where �EA decays rather gradually; and

(iii) regime ηx < η, where �EA never decays to zero.

Quite similar values for ηx as well as ηf were obtained by the Langevin dynamics method [36]
in which a similar scale of discretization of the whole system was employed (see also [42]).
We call these regimes the nominal liquid, the supercooled liquid and the deeply supercooled
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Figure 1. Time dependence of the density correlator φq at η = 0.485 in the supercooled liquid
regime. Full curves (almost behind the symbols) represent fitted stretched exponential functions
from which the exponent βq and the relaxation time τq are determined (see table 2). The φq ’s with
q around the primary peak position k = qσ = 6.5 of the structure factor are shown in the left
panel, while the right panel shows this around the secondary peak position k = 12.5.

liquid or glassy regimes, respectively. It should be stressed that there is no strict criterion on
the division of the regimes. In fact, no apparent discontinuities show up in the static properties
such as the structure factor in passing from regime (i) into (ii). Note, however, the definitely
qualitative difference in the relaxation below and above ηx, which was in fact identified as the
crossover packing fraction (see below) formally denoted by ηc in the idealized MCT.

Before examining more closely the difference in relaxation behaviour associated with
a change in the character of the free-energy landscape in those regimes, it is necessary to
evaluate the timescale of the relaxation. To this end the normalized density correlator φq(t)
was calculated for various packing fractions, from which the relaxation time τq as well as the
exponent βq were extracted by fitting the results to the stretched exponential function (see
section 1.1). The values have already been tabulated in table 1 of [4]5. However, we repeated
the calculation to gain much better statistics by extending the time steps at least 100 times as
large as those employed previously. This allows us to increase the time window of φq(t) by
a factor of 2–3. Moreover, we added several points of η in the close vicinity of ηx at which
these calculations were carried out. We show in figure 1 as an example the time variations of
φq(t) for η = 0.485 in the supercooled liquid regime6. The left panel shows those with the
wavenumber around the primary peak position k = 6.5 of the structure factor, while the right
panel shows those around the secondary peak position k = 12.5. As to the typical structure
factors for the three regimes, see figure 3 of [4]. The plateau, whose height gives the glass form
factor as mentioned in section 1.1, is not recognizable from the figure, which might appear at
first glance to be due to an inadequacy of our DDFT [43]. This point will be clarified in the next
subsection. The full curves (though almost hidden by the symbols) represent fitted stretched
exponential functions. The revised values obtained by the fit are tabulated in table 2. It will be
identified later that these τ indeed yield the characteristic times of the late β- or α-relaxation
regimes in the supercooled liquid state, which prompts us to fit the dependence of τ on η to
a power-law form. This result is shown in figure 2, in which D−1 ∼ τ at k = 6.5 is plotted

5 Follow the link from http://wwwsoc.nii.ac.jp/jps/jpsj/index.html.
6 We use the dimensionless wavenumber k = qσ here.
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Figure 2. Dependence of the inverse diffusion constant, or the characteristic timescale of the
α-relaxation, on the packing fraction.

Table 2. The characteristic time τq of the α-relaxation in units of MCS (left in each column) and
the exponent βq (right) obtained through a fit to a stretched exponential function as a function of
packing fraction η and wavenumber given by qσ .

qσ η 0.390 0.440 0.452 0.463 0.474 0.485

5.0 25 0.81 130 0.60 200 0.45 340 0.48 810 0.54 1900 0.33
6.5 83 0.86 910 0.67 1700 0.64 3900 0.63 9500 0.64 42000 0.55
7.5 66 0.81 1100 0.65 2000 0.63 5000 0.63 12000 0.65 55000 0.53

10.0 22 0.69 100 0.67 160 0.59 220 0.59 450 0.60 570 0.37
12.5 44 0.72 770 0.59 1500 0.55 4300 0.54 11000 0.57 44000 0.54
16.0 37 0.66 650 0.53 1300 0.45 3800 0.45 11000 0.45 42000 0.46

against η by open circles. A full curve is a fit to (ηc − η)−γ with ηc  0.50  ηx and7γ  2.6,
which is not in conflict with the original MCT prediction. However, the same data can also be
fitted to the Vogel–Fulcher (VF) law [8], giving ηc  0.60, which is close to the one obtained
in [36]. In view of the fact that the VF law is discussed on a phenomenological basis, a slightly
better fit to the VF law might have rather fortuitous significance and we do not look into this
point any further.

Having thus evaluated the typical relaxation timescale in the three regimes of the liquid
state, we return to the argument of the manner of structural relaxation in these regimes. We fix
t2 ∼ τ ∼ 103 MCS, the typical relaxation time in the supercooled liquid regime, to tentatively
define |�(α)

ref 〉 for each8 η. We then define the state |φ(α)
t 〉 in a similar manner by

|φ(α)
t 〉 ≡ ‖〈n〉(α)

τ ;t ‖
−1|〈n〉(α)

τ ;t 〉, (14)

which enables us to assess a departure of |φ(α)
t 〉 at time t from the reference state |�(α)

ref 〉 by the
projection

q(t) = 〈φ(α)
t |�(α)

ref 〉. (15)

Time evolutions of q(t) thus defined are depicted in figure 3 for representative packing
fractions in the three liquid regimes. In the nominal liquid regime (η = 0.312) q takes an
almost constant value of unity (shown by a full curve). This is easily understandable from our

7 Since the change at around ηx seems to be sluggish, it need not strictly distinguish ηx  0.49 from 0.50.
8 t1 is taken to be much longer.



12214 K Fuchizaki and K Kawasaki

0 50000 100000

0.6

0.8

1

t (MCS/site)

<
φ t

(α
)

Ψ
re

f(α
) >

η=0.312
0.440
0.491

Figure 3. Time evolution of q(t) at η = 0.312 (full curve), η = 0.440 (short broken curve) and
η = 0.491 (long broken curve). At η = 0.491, which is just above the crossover packing fraction
ηx, the system, which once was trapped in one of the glassy minima, starts to escape towards the
state with lower free energy, while below ηx the system continues to stay in the liquid minimum
though the amplitude of density fluctuations becomes larger as the packing fraction increases.
Reproduced from [5].

expectation that in this regime there is a unique global minimum in the liquid free energy in
which the system relaxes in a much shorter time than τ so that |φ(α)

t 〉 is independent of t and is
essentially the same as |�(α)

ref 〉. In this sense there is a unique α in this regime. As the packing
fraction increases beyond ηf into the supercooled liquid regime, the amplitude of oscillation in
q becomes larger with a slight loss of overlap but the centre of oscillation remains unchanged
(short broken curve). This suggests that the liquid free-energy minimum, which is still a single
minimum, becomes shallow9.

It is a challenge to go beyond ηx where the original MCT is no longer accessible. A long
broken curve shows a behaviour of q at η slightly above10 ηx. After an initial jump q becomes
almost flat, which is followed by a next jump. One can easily infer that the system gets trapped
in one of the glassy minima from which it eventually relaxes toward a lower free-energy state
via thermally activated hopping transitions over free-energy barriers. This peculiar behaviour
of q thus provides strong evidence for the hopping process. The timescale associated with the
hopping process, which is estimated from the duration between successive jumps, seems to be
at least one order of magnitude longer than τ , an upper bound of the timescale over which the
original MCT can cope with.

In order to examine in more detail the change in the landscape with a change in η, which is
speculated from the qualitative change in the behaviour of q , we introduce the order parameter
qαβ defined by

qαβ ≡ 〈�(α)

ref |�(β)

ref 〉 (α �= β). (16)

This is, so to speak, the replica order parameter in the spin glass language [44], which measures
the amount of overlap between different reference states. To obtain qαβ 20 realizations with
different initial configurations were generated to calculate |�(α)

ref 〉 at each packing fraction.
Consult the original paper [5] for computational details.

The distributions of the values of qαβ are shown in figure 4. In the nominal liquid regime,
the distributions are sharply peaked at around unity, implying the uniqueness of the liquid
free-energy minimum. However, this ‘replica symmetry’ breaks down with increasing packing
fraction beyond ηf , reflecting the multi-minima aspect of the free-energy landscape. At the
same time the average of the distribution tends to a smaller value, which means that the average
‘distance’ between the reference states becomes larger.
9 The decrease in overlap is due to slightly insufficient equilibration upon evaluation of the reference state.
10 It is more appropriate to state that η is in the crossover region.
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Figure 4. Distributions of the order parameter qαβ obtained from 20 realizations of the reference

states {|�(α)
ref 〉} with different initial configurations at each packing fraction. These are, from the

lower packing fraction side, at η = 0.312, 0.390, 0.440, 0.463 and 0.491. Reproduced from [5].

We have thus succeeded in discussing the glassy dynamics of liquid in connection with
the free-energy landscape, utilizing the spin glass analogy in a novel way. This could be done
because our lattice version of DDFT is constructed on the kinetic lattice gas model.

3.2. Advantage of coarse-grained description

As described in section 2.2 our lattice version of DDFT provides a coarse-grained description up
to the length scale ∼σ . This brings about a great advantage over the other approaches reviewed
in the introduction, as we shall see below. In connection with this point an explanation for the
‘particle’ mentioned in section 2.2 should be given here in some detail.

From the fact that n(t) of the lattice DDFT is only related to the local particle density
ρ(r, t) = ∑

i δ(r − ri ) in the continuum by the relation 〈ni 〉τ = 〈ρ(r, t)〉τ , the average being
taken over the typical relaxation times, together with the coarse-graining of (9) applied to
the kinetic lattice gas model, it is evident that the ‘particle’ of the lattice gas model does not
directly represent a liquid particle. They coincide at the dilute gas limit where the mean-free
path is the only length scale of the system. Moreover, identity of a liquid particle is lost
during the coarse-graining. This means that the lattice DDFT cannot treat the motion of a
tagged particle. To be more specific, the van Hove function, which is given in the lattice
DDFT by G(r, t) = L̃−3

∑
i j〈δni (t)δn j (0)〉δr,ri −r j , where δni = ni − ρ0, is meaningful

in the lattice DDFT but its self and distinct parts are not. The same argument can be used
for the intermediate scattering function, the spatial Fourier transform of G(r, t), whose time
variations were already shown as the density correlator in the previous subsection.

However, although a ‘particle’ is not a particle by itself, the motion of particles ought
to be reflected through the Kawasaki exchange of ‘particles’ [45]. Depicted in figure 5 are
time variations of the mean squared displacement (MSD) of a tagged ‘particle’ under various
packing fractions. Delineated by broken curves are those in the nominal liquid regime, whereas
full curves are in the supercooled liquid regime. Note that the behaviour of MSD in figure 5
bears hardly any similarity with the ordinary MSD behaviour such as the one reported for
HSS in figure 4 of [14], the reason being given in the following. When compared with
the corresponding result obtained through the microscopic dynamics method such as MD
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Figure 5. MSD versus time in units of MCS of a ‘particle’ for various packing fractions; from the
top η = 0.256, 0.312, 0.390, 0.440, 0.452, 0.463, 0.474 and 0.485.

simulations, naturally no regime of ballistic motion is present. It is also seen that in the
supercooled regime the plateau in MSD associated with the cage effect, which should appear
at around 〈r2(t)〉/σ 2  2 × 10−2 [46], is obscure and the motion of ‘particles’ gradually
goes over into a diffusive behaviour. This is quite reasonable, however, because the height
of the plateau is below the present lower-cutoff length, which is given in terms of MSD as
〈r2〉/σ 2  10−1. At around this height slight inflection is recognized in the curves of MSD.
One can also extract from this figure the lower-cutoff time tlc for each η, which is given by
〈r2(tlc)〉/σ 2  10−1. The dynamical processes with timescales less than tlc should be regarded
as fictitious.

The moments 〈r2n(t)〉 (n = 1, 2, . . .) of a tagged ‘particle’ can be calculated in a
similar way, from which the non-Gaussian parameter αn(t) = 〈r2n(t)〉/(Cn〈r2(t)〉n

) − 1 with
Cn = (2n + 1)!!/3n [47] is obtainable. The non-Gaussian parameter α2 thus obtained is
presented in figure 6. Those parts in the fictitious time region are omitted. It is said that the
non-Gaussian nature of ‘particle’ motion is pronounced at around the time regimes where the
plateau in MSD would appear, the time regimes where the cage effect would be pronounced
in real particle motions.

Shown in figure 7 are φq for various packing fractions plotted versus t/τq(η) (see table 2
for τq) for k ≡ qσ = 7.5 corresponding to the wavenumber in the immediate vicinity of
the primary peak in the structure factor. We can now address the problem of the absence of
the MCT plateau associated with the early β-relaxation (the location being designated in the
figure as φk(∞)), which is in the fictitious time domain. However, the two-stage relaxation,
i.e. the β-relaxation followed by the α-relaxation, observed in the dynamic light scattering for
colloidal systems mentioned in section 1.1 should be reproducible by a stochastic model like
DDFT, which is in no way the same as a totally microscopic description containing inertia
effects. We shall come back to this point in the next section.

It is rather important, however, to appreciate that the density correlators obtained through
the lattice DDFT thus skip over the stage leading to the plateau, the way of approaching the
plateau being known to be strongly affected by the microscopic dynamics employed [34, 35],
and immediately show the asymptotic scaling behaviour in the supercooled liquid regime.
This is nothing but the feature that is brought about by the effectiveness of the coarse-grained
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Figure 7. The normalized density correlator φq with k = qσ = 7.5 for various packing fractions
are plotted against t/τq , τq being the α-relaxation timescale (see table 2). The states with η = 0.312
and 0.390 are in the nominal liquid regime, whereas the others are in the supercooled liquid regime.

description in treating the slow dynamics at the cost of the information regarding the plateau.
The master curve formed by the plots forη in the supercooled liquid regime (note thatη = 0.312
and 0.390 are in the ordinary liquid regime) shows the α-relaxation of the density correlator.
This is why we fitted the density correlator to the stretched exponential form in the previous
subsection. Figure 7 is the lattice DDFT demonstration of the time–temperature superposition
principle predicted by the original MCT. In this connection we have no desire to compete with
MCT in the region where the idealized MCT is valid (the regime in which thermally activated
processes play no role). Our aim is to provide a way to naturally extend the results of MCT to
the region with non-negligible thermally activated processes.
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Figure 8. Sectional view of the coarse-grained density profile at η = 0.491.

The other advantage of our coarse-grained description is that the density profile evolving
in time is directly obtainable. The density profile, when averaged over a suitable time duration,
varies from wave-like diffusive to particle-like strongly localized pattern with increasing
packing fraction, as shown in figure 1 of [4]. In this way, we could visualize the coarse-
grained density profile to show that actual jumping of particles takes place during the hopping
transition over the glassy free-energy landscape (figure 3) in the deeply supercooled liquid
regime (see figure 3 of [5]). The ‘wave–particle duality’ of the density profile may also be
a useful feature in discussing a possible escape route of a structurally arrested particle in a
deeply supercooled liquid. Such a particle image was indeed detected which deformed as if
it was divided into two or more when passing through a narrow canal during an activation
process. An example seen in η = 0.491 is shown in figure 8, in which such elongated images
are noticeable. Such an activation process consists of frequent exchange between ‘particles’
and ‘holes’, whose frequency and spatial distribution may have a close connection with the
kinetic heterogeneity associated with bond breakage processes [48].

4. Discussion and future perspective

Historically, essentially the same kinetic equation as the DDF equation (4) with (5) has been
already put forth before the MCT breakthrough but in different contexts [49], which were not
studied extensively. Recently, Munakata [50] has developed the DDF formalism. However,
caution should be used in a blind application of the mode-coupling approximation to the purely
dissipative kernel [38, 51] (see also [52] for the irreducible memory function method).

Yet another DDFT has been proposed recently by Marconi and Tarazona [53]. In
their formalism, on the way to a conversion of the Langevin equation for particle motion
to the time-evolution equation of the density field, the free-energy functional of the
inhomogeneous field naturally appears. They assumed that the evolution of the system can be
represented by an infinite sequence of equilibrium states ρ(r, t) that make the grand potential
functional Fcanon{ρ} a minimum. The resultant DDF equation is a deterministic one that
describes the evolution of the averaged density field driven by the gradient of the chemical
potential. However, it is clear from its construction that their DDF equation cannot deal with
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the first passage problem such as barrier crossing discussed in the last subsection, since the
grand potential becomes unstable there.

Of particular importance is that they pointed out that the free-energy functional which
enters other existing DDFT, including ours, is the microcanonical one. It is thus appropriate to
comment on two types of free-energy density functionals in general [43]. One is that introduced
in the equilibrium theory of liquid [54]. Here we imagine a liquid in a stable equilibrium state
under an external field acting on the density, which is a function of r. Thus the Helmholtz
free-energy depends on the external field. If we apply a Legendre transform, we get a so-called
canonical free-energy density functional Fcanon which is always stable by construction. We note
that the unique correspondence between external field and density profile is proven [55]. Due
to this stability property this functional cannot be used to discuss metastability or, especially,
instability because the Hessian matrix δ2 Fcanon/(δρ(r)δρ(r′)) is always positive semi-definite.
On the other hand, in application to dynamics another type of free-energy density functional
is often introduced by specifying the density profile ρ(r) precisely, which may be called the
microcanonical density functional Fmicro. There is no guarantee that the Hessian matrix for
Fmicro has to be positive definite, and can be used to study metastable and unstable states.
However, virtually no serious study exists for Fmicro. Various approximate forms proposed for
Fcanon, such as the RY density functional [31], is smuggled in to replace11 Fmicro. However,
the difference between the two density functionals becomes small if the density fluctuations
are kept small by choosing large enough coarse-graining cells. For the reference fluid of our
lattice version of DDFT, this is the case since the size of a coarse-graining cell can be taken
to be between h and l (see (9)). Therefore, the problem mentioned here disappears for the
reference fluid.

It is appropriate at this point to make a comment on the criticism raised by Marconi
and Tarazona [53]. They claimed that, although our coarse-graining procedure is physically
motivated, it cannot be rendered explicit. This does not hold for the lattice version of DDFT
at least, as is evident from the arguments presented in section 3.2. Recall the absence of the
MCT plateau in the decay of the density correlator, which is a consequence of our choice of
the coarse-graining scale specified by the inequalities (9). In the lattice DDFT the choice of
this scale is at our disposal. If a larger σ than the current value is adopted, then we may look
into the time regime of the MCT plateau. We hope to prove this proposition in the near future.

Although the lattice version of DDFT proved to be fruitful as seen in section 3, we must
repeat that the mapping onto the kinetic lattice gas model is merely an approximate one (see
section 2.2). The degree of the approximation becomes worse as supercooling proceeds,
i.e. with increasing packing fraction. Since the approximation is based on the physically
plausible argument and does not proceed in a systematic way, we can no longer assess how
much poorer the approximation will become. This point should be clarified before applying
the lattice DDFT to a more complex system or to new kinds of systems not yet treated by other
means.

Conceptual difficulty is still inherent in our DDFT, as pointed out by one of the authors [43].
This is in regard to the elimination of variables without clear-cut separation of timescales. In
our current DDFT the momentum field was projected out, based on an intuitive argument,
although the projection itself was carried out analytically (see section 2.1). This is only

11 It is a curious fact that this RY density functional does not always describe stable states. This is due to the fact
that the RY form is obtained by expansion in powers of the local density fluctuation around its average value in the
stable uniform liquid state. However, equilibrium free-energy can have singularities, e.g. essential singularity at the
first-order phase transition as shown by Fisher and Andreev [56], which is washed away by expansion. The RY free
energy thus can be analytically continued into inside the coexistence region just as for the original van der Waals
theory. This makes the RY form qualify as a free energy that can be used to deal with metastability and instability.
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adequate in the high-temperature region where taking the high-friction limit in the Kramers
rate theory [57] is justifiable. Therefore in high-packing fraction regimes not only the lattice
version of DDFT but also the original DDFT may be confronted with a difficulty attributed
to the physical situation which is not taken into consideration in the formalism. Our DDFT
is still an infant in this sense. We must continue to pay much effort in looking for a way to
surmount or bypass this point. Yet, enormous slowing-down of the density variable in the low
temperature and/or high density regime tends to favour clear-cut separation of time scales.

As to this problem one of the authors has recently suggested [43] the use of action variables
as a substitute for local density, which might give a gleam of hope. The action variables appear
in the instantaneous normal-mode approach [58] to the barrier crossing problem. The phase–
space variables in the configuration space are transformed into normal-mode variables with
real and imaginary eigenfrequencies corresponding to local stable and unstable points. These
normal-mode variables are characterized by two widely separated timescales with which to
divide them unambiguously into slow action and fast angle variables. A way of constructing
a new DDFT, in which the latter variables are eliminated by coarse-graining procedure, has
been proposed [43].

Finally we close this paper by making a comment on the way that DDFT makes sense
in its own right to truly overcome MCT in examining the glass transition phenomena. As is
clear from the argument thus far, the usefulness of DDFT will hinge on the accountability
of the experimental results on the glass side beyond the crossover point. We believe that the
DDF formalism will provide a promising way to attack this problem, although some inherent
difficulties mentioned above in our current version of DDFT must be overcome in a satisfactory
manner.
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Appendix. Comment on section 6 of [59]

Since DDFT was discussed in some detail in [59], it is appropriate here to mention a delicate
point associated with DDFT, which has not been touched upon so far, in the form of a comment
here. We find it better to replace the rhs of equation (6.5) of that reference by

Pe({ρ}, {j}) = P̃ j
e ({ρ}, {j})P̃ρ

e ({ρ})
where, apart from trivial constant normalization factors,

P̃ j
e ({ρ}, {j}) ≡ exp

[
−

∫
dr

j(r)2

2mkBTρ(r)
− 1

2�V

∫
dr ln ρ(r)

]

and

P̃ρ
e ({ρ}) ≡ exp(−β Hcorr)
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with

Hcorr({ρ}) ≡ H ({ρ}) − kBT

2�V

∫
dr ln ρ(r).

Here �V is the coarse-graining volume. Each factor on the rhs is normalized in the sense that∫
d{j} P̃ j

e ({ρ}, {j}) and
∫

d{ρ} P̃ρ
e ({ρ}) are both constants independent of {j} and {ρ}.

It should be noted that Hcorr is the correct free-energy functional that appears in the
equilibrium probability distribution for {ρ} which differs from H that appears in the Fokker–
Planck operator (5).

If we regard j as a vector with three independent components, the factor 3 is required in
front of the logarithmic terms in the above. However, in the MCT context, only the longitudinal
component of the momentum density field comes in, and hence the factor 3 is absent. In other
contexts this factor is required.
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